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We present a contour dynamics algorithm for the Euler equations of fluid dynamics in two 
dimensions. This is applied to regions of piecewise-constant vorticity within finite-area- 
vortex regions (FAVR’s). Essentially, this reduces the dimensionality by one and we are 
treating the interaction of closed polygonal contours whose nodes are advected by 
the total fluid motion computed self-consistently. A leapfrog centered scheme is used 
for temporal advancement. Computer simulation results are given for two and four like- 
signed interacting FAVR’s. In all cases wavelike surface deformations are observed. If the 
distance between FAVR’s is comparable to their extent (“diameter”), these surface de- 
formations are large. They play an essential role in the observed coalescence of FAVR’s. 

1. INTRODUCTION 

High Reynolds number flows in two dimensions almost always develop jinite- 
urea-vortex-regions (FAIR’s) with steep sides. The evolution of these incompressible 
flows involves the self- and mutual interaction of these deformable FAVR’s. 

When finite-difference methods are used to simulate these flows, a high mesh 
resolution is required to avoid introducing grid-scale dissipation and dispersion errors. 
To overcome these difficulties, Chorin [l] has proposed a vortex scheme which advects 
nondeformable FAVR’s with a velocity composed of two parts: a deterministic 
component calculated from the existing vorticity distribution; and a zero-mean 
Gaussian random component to simulate dissipation. The advantages and disadvan- 
tages of the proposed method are under active investigation for shear flows [2] and 
cavity flows [3]. 

The motivation for the present study arose when Christiansen and Zabusky [4] 
studied the stability of the inviscid von Karman wake in two dimensions. They used 
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a two-dimensional point vortex-field code and noted the important effects of 
induced waves on the surface of FAVR’s. To elucidate these nonlinear wave effects 
with a moderate amount of computation we introduce the method of contour 
dynamics (CD) for inviscid incompressible fluids in two dimensions. 

The CD method does not use an underlying lattice and is a generalization of the 
“water-bag” model used to study plasma dynamics [5, 61. In essence, it amounts to a 
dynamic interaction among closed contours enclosing FAVR’s. That is, we have 
reduced the dimensionality by one. To obtain this great simplification, we assume that 
each FAVR has a constant vorticity density of arbitrary magnitude. 

In this paper we present computer simulation results for one, two, and four inter- 
acting like-signed FAVR’s. The latter two simulations show large-amplitude wavelike 
deformations resulting from self- and mutual interactions. We believe these deforma- 
tions play an essential role in the stability and coalescence phenomena observed for 
coherent structures in fluids [7]. Generalizations of the method and error analyses will 
be described in future publications. 

2. CONTOUR DYNAMICS ALGORITHM 

A. Continuum Formulation 

The incompressible, inviscid Navier-Stokes equations (Euler equations) in two 
dimensions can be written in “vorticity” form as the coupled set of equations 

and 

Wt + uw, + VW, = 0, (1) 
vz* = $L + A/, = -w, (2) 

u = &/, v = -&, 

oJ=-u2/+vr. 

Regions of positive vorticity or circulation correspond to counterclockwise motions 
of convected fluid elements; that is, we are studying a right-handed coordinate system 
where the vorticity vector is along e, = e, x e, . 

We write the stream function at (x, JI) as an integral over all the FAVR’s 

where da = df dq 

r2 = (x - 0” + (Y - v>“, (5) 

and log (r/R) is the Green’s function of Poisson’s equation (2). We have inserted the 
normalizing constant R for convenience in writing algorithms. All pertinent quantities 



98 ZABUSKY, HUGHES, AND ROBERTS 

are depicted in Fig. 1. The velocity at any point in the flow field, in particular on 
closed contours, is 

or 
u = V x e,* = edi% - edb, 

u = (24-l s da 4e,& lo&/R) - QE log(r/R)I, 

au + -a, and a,-, -a, 

(6) 

(7) 

because of the definition (5). Integrating (7) by parts yields 

u = --(277-l j da log(r/R)[e, 6$~ - eY a(~], (8) 

= (257-l e, x s da(log(r/R)) Vp. (9) 

For clarity, we append at times the subscript 4 or x to the gradient and Laplacian 
operators. That is, 

V, = es% + e,a, and V, = esas f e,a, . 

FIG. 1. (A) Definition of quantities for a finite-area-vortex-region (FAVR) of strength 01. 
(B) Definition of quantities for a piecewise-linear contour. 
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We decompose the integral of (8) into two parts: the large area within the contour 
where Vp = 0 contributes nothing; and the small strip following the contour 
where V,w is singular yields a finite contribution. On the contour, we introduce the 
localized S, q orthogonal coordinate system as shown in Fig. 1, where area dq ds = 
de dv. This transformation with unit Jacobian holds if the contour is piecewise 
continuous. (That is, the tangent and normal directions may jump discontinuously.) 
Thus, 

6,~ = (?pWql&) and %JJ = (~,~)(dqld~), (lOa) 

or 
6p = [w] S(q) cos(n, 6) = [w] 6(q) sin 8, 
ap = [w] S(q) cos(n, 7j) = -[WI 8(q) cos 0, 

(lob) 

where 
bl = w lo - w II 2 (see Fig. 1 A), 

and 6(q) is the delta function with q measured positively in the e, direction. The x and 
y components of the direction cosines are cos (n, 4) = sin 0 and cos (n, r)) = -cos 19. 
If we replace the components of V,OJ using (lob) and perform the q integration, we 
obtain 

u = (2~))~ 2 [wlj $ 
j=l j 

log f [e, cos Oj + e2, sin ej] dsj , 

u = (27~))~ 5 [wlj fi log f [e, d& + ey drld 
j=l j 

(11) 

where [w]~ is the value of [w] associated with contour j. Hence the constant vorticity 
regions have been replaced by a distribution of sources with logarithmic strengths 
along contours (labeled with the indexj) surrounding NC regions in the field. 

2B. Spatial Discretization 

We assume that the contour bounding one FAVR is a polygon with N nodes and 
now consider their interactions. As depicted in Fig. lB, along each segment of length 
h, between nodes n and n I 1, r is approximated by J 

i2 = (s - tn - E’)2 + (J - r]n - [’ tan 0n)2, (12) 
or 

F2 = rn2(1 - 211~~ + 12), (13) 

where r, is the distance from node n to (x, v) (usually another node), qSn is the 
associated angle and 

pn = cos<+n - On), (14) 

5 = 65 - Sn>l(rn cos 42 = 5’/(r, cos 4J, (15) 

and 
tan 0, = Chl - .~J(x,+~ - 4. 
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For one FAVR, Eq. (11) can be discretized as 

N 

u = C (Au), (e, cos 6, + ev sin 0,) 
7l=l 

(16) 

(since On and q5, are identified with node n) and 

(Au), = (1/47r)[w] r, ho’“““’ log(?/lR)2 d[ (17) 

is the increment contributed by the linear segment between nodes n and n + 1. After 
some algebra we write 

where 

(4, = U/47+1 Mlog(r,/~)2 + (1 - dG1r,) 1% 4% - 2 

+ 20 - pn2Yz (r,/hJ tan-l @3>, (n # 1, N) (18) 

and 

Pn = (kJrn>(l - pa2Yz/[l - (h,lr,) ~~1. (19) 

Note we have used 

ReEL logtl - hk3rn)] = pn log qk’2 - (1 - pLn2>1’2 tan-’ fin , 

where 

cn and Sn* are roots of 0 = 1 - 2 &L~ + 52. 

If n = 1 is identified with the point (x, -v) then 

and 
(du), = (2n)-l[w] h,(log(h,/R) - l), (20) 

(du), = (2n)-l[w] h,(log(h,/R) - 1). (21) 

Furthermore, the contribution from distant nodes (hn/r, < 1) may be obtained from 
an asymptotic expansion of (18) or more directly by expanding (17) in an asymptotic 
series and integrating, 

(Au), = ([w1/27~) Mlog(rnl@ - +p,&/r,J f 8(1 - 2pn2)(h,/r,)@ 

‘r tpnU - 9p,L2>(h,/r33 L O(h,/m)41. (22) 

A similar procedure may be followed to find interactions among nodes on different 
contours. 
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2C. Temporal Discretization 

We now identify (x, y) with a node of a FAVR, or (xm , ym). Each node is convected 
with the local fluid velocity, or 

4x m , VA = 2, = ke, + hey 

= il (Au),, (~0s her + sin eneu), (23) 

where (Au),, is (Au), of Eq. (18) with rla replaced by 

and & is 

mm = Kxm - XnY + (Ym - Yn)211’2, (244 

hn = tan-W, - YJ/C~ - x,)1. Wb) 

Since we are dealing with a conservative system, we integrate (23) using a centered 
leapfrog scheme, or 

N 

(2At)-l (xE+l - xF> = 1 (Au),“, (cos B,“e, + sin 6,‘e,). 
n=l 

(25) 

To start, one takes a forward time step on a reduced time interval, (At)s < dt, and 
then uses a doubling-up procedure. At, is chosen so that the errors in the initial step are 
consistent with those in the later steps. 

2D. Outline of the Calculation 

Initially, the number of nodes Nj , shape and vorticity of each FAVR (j = I,... J) 
is given. Nj is chosen sufficiently large to approximate a continuum curve. 

Using (16), and summing in addition over the J FAVR’s we obtain the velocity of 
each node. For convenience we have adopted two formulas for (Au),, : 

(1) @4,m = (2rr)-l[olh,[log(h,lR) - 11, m=n-lorn, (2W 
(2) (Au),, = P7Fbl UWrmlNl, mfn-lorn. Wb) 

The first is obtained from (20) and (21). The second comes from truncating the 
asymptotic series (22) after the first term. The errors introduced by this convenient 
truncation will be investigated at another time. 

The new position of each node is obtained by solving (25), as indicated. At is 
chosen such that 

At < Min@,lMax I 4x, , Y~)II, (27) 

where the Min-Max is over all nodes. For example, in the runs described in Section 3 
At = 0.2. For the duration of the runs performed the odd and even steps of the 
leapfrog solution did not fall out of “phase” and no temporal smoothing was used. 
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3. COMPUTATIONAL RESULTS 

To validate the CD algorithm, we examined the rotation of a 2:l ellipse with 
N = 30 and dt = 0.2. As Lamb [8] reports, the period of rotation is T = (27~/[w]) . 
{(b + a)2/ba} or 9rr for a 2:l ellipse with [w] = 1.0. The duration of the run was 
tF = 99.799 and the observed rotation in Fig. 2c was 1272.3” (a little over 34 revolu- 
tions). Hence, the observed rate of rotation was 12.75”/unit-time compared to the 
true rate of (360/97r) = 12.73”/unit-time. One notices a slight difference in the shape 
of the ellipse, but overall the agreement is good. 

FIG. 2. The rotation of a Kirchoff elliptic vortex. Ratio of major-to-minor axis = 2:l. N = 60, 
At = 0.2. 

Figure 3 shows four cases of the interaction of two identical negatively signed 
(w, = - 1, w0 = 0) initially circular FAVR’s of identical diameter D = 0.6. The initial 
separations of centers were L, = 1.10, 1.022, .02, and 0.80, respectively, or (D/L,) = 
0.5455, 0.5871, 0.5882, and 0.75. Each circle was discretized with N = 30. At the 
largest separation, case 1, the FAVR’s rotated about one another in a clockwise 
direction and induced wavelike perturbations on their surface. As the initial separa- 
tion, L, , is decreased, the deformations of the vortex surface increase. In case 2 they 
“pulsate” toward one another and then withdraw, leaving an extremely narrow 
region of vorticity between them. 

In case 3 they coalesce weakly and exchange “vortex fluid.” We see a narrow 
region of vorticity creeping around each FAVR. In case 4 they coalesce strongly and 
eject vortex “arms,” a common feature of high Reynolds number fluid dynamic 
simulations. We stopped this run at this time because the spacing of nodes had 
increased beyond a tolerable amount. 

In Fig. 4, we show the interaction of four identical negatively signed (w, = - 1, 
w0 = 0) initially circular FAVR’s of diameter D = 1.0 and N = 20 whose centers 
are placed on a circle of radius 1.16. This is a well-unknown unstable configuration 
and the manner of coalescence is exhibited. 
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FIG. 3. Interaction of J = 2 initially circular negatively signed FAVR’s of diameter D = 0.6. 
(N = 30 segments per circle, At = 0.2). Initial separations are: (I) 1.10; (2) 1.022; (3) 1.02; and (4) 
0.80. [w] = +1 and the gross rotation is clockwise. 
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FIG. 4. Interaction of J = 4 initially circular FAVR’s of diameter 1.0. The centers are located 
initially on a circle of radius 1.16 (N = 20 segments per circle, dt = 0.2). [o] = + 1 and the gross 

rotation is clockwise. 
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4. DISCUSSION 

We have presented a contour dynamics algorithm for incompressible inviscid 
fluids (Euler equations) in two dimensions. We assumed piecewise constant FAVR’s 
and discretized the contour by assuming an N-node polygon. For moderate times 
we have presented high-resolution results obtained with a moderate amount of 
computation. To extend the algorithm to long times, one must examine errors in 
spatial discretization and temporal advancement. As contours elongate and merge, 
one must add and delete nodes as described in [5] for the Vlasov equation. Since 
there is no underlying mesh, this is an efficient scheme for very high Reynolds’ 
number flows. 

A variety of wave and breaking phenomena has been observed in Figs. 3 and 4. 
When the distance of closest approach of two or more deformable FAVR boundaries 
is less than their “diameter,” self- and mutual interactions cause vortex “pulsation,” 
temporary-and-permanent coalescence, and the ejection of vortex arms. Such micro- 
scale phenomena are excluded a priori if one deals with nondeformable vortex 
FAVR’s or introduces ad hoc procedures for vortex coalescence [9]. 

Work is now in progress to generalize the method of contour dynamics for: 

(I) stratified media described by the Boussinesq equations in two dimensions; 
(2) periodic boundary conditions in x. 

We will apply the latter algorithm to study the stability of the asymmetric vortex 
street. Von Ksirman performed a linear stability analysis for a street of point vortices 
and found marginal stability only for a transverse-to-longitudinal separation of 
(b/a = 0.281). All other b/a ratios were unstable. Kochin et al. [IO] showed that all 
point vortex streets are unstable if nonlinear terms are properly included. We will 
seek to validate the conjecture of Christiansen and Zabusky [4]: that an asymmetric 
street where (b/a) = 0.281 is stable because of self-consistent wavelike deformations 
of the FAVR boundaries. 
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